

One Approach to Efficient Management
of Zillion Signatures

Rudan, Sasa; Kovacevic, Aleksandra; Babovic, Zoran; Jovic, Darko; Milutinovic, Veljko; and
Milligan, Charles

Abstract—In the introductory part, this paper

defines the general environment for this research
and defines the terms of interest. Then we define
the research problem: How to manage efficiently
billion file signatures from a specially introduced
new file signature management layer; this problem
is important because it enables the files signatures
to be handled in a fast way. Existing solutions to
the problem are briefly surveyed in the third part,
and their drawbacks are underlined; each surveyed
piece of research is analysed according to the
same template. Then, the essence of the proposed
solution is presented: Efficient storage of 1billion
20-byte digital signatures, their fast lookup, insert
and delete, fast rebuild of the storage digital
signature index; it also includes primitives that can
be directly ported into hash functions and other
appropriate mechanisms used for management of
file signatures; this idea has several versions. The
fifth part defines conditions and assumptions of
the analysis to follow. Analytical analysis of all
above is presented next. Elements of a simulation
study, to compare performance, are presented in
part seven. The conclusion is presented in the part
eight.

1. INTRODUCTION
EW storage systems deal with billion of files.
These files are usually stored on classical

hard disk based storages. This environment is
characterized with inefficiency of hierarchical file
systems.

New concepts of raw file systems use digital
signatures as Uniform Resource Identifier’s (URI)
for stored files. This implies a need for extremely
fast digital signature management, i.e. searching,
storage, and deleting of digital signatures in the
domain of 220*8=2160˜ 1048 values.

One of the basic feature of digital signatures is
sharp miscorrelation between two digital
signatures that come (are calculated) from two
extremely correlated documents (even if
documents differ only in one bit). It implies an
approximately uniform division of digital signature
values created from a finite number of

documents.

 17

Manuscript received January 30, 2006. This work was supported

in part by the StorageTech.
Sasa Rudan, Aleksandra Kovacevic, Zoran Babovic, Darko Jovic,
and Veljko Milutinovic are with Faculty of Electrical Engineering,
University of Belgrade, Serbia.
Charles Milligan is with StorageTech.

2. PROBLEM STATEMENT
The Digital Signature Index Mechanism

represents a service used by the archive
platform. This service provides fast and reliable
lookup/insert functionality. The archive system is
designed to handle up to 1 billion unique data
files. Each file is identified by a unique digital
signature, calculated using at least two different
algorithms.

The archive system has to be able to quickly
determine if a data file is either a unique data file
or a duplicate of an existing file. This is
accomplished by generating the digest on the
file, then querying the existing digital signatures
looking for a match.

The Digital Signature Index Mechanism has to
be durable to system failures, redundantly stored,
and secured from unauthorized manipulation.

The primary challenges are:

1. Efficient storage of 1 Billion 20-Byte
digital signatures.

2. Fast lookup, insert and delete of a digital
signatures.

3. Fast rebuild of the storage digital
signature index.

The digital signature storage mechanism
should be used as a lookup system only. It does
not act as a system of records for digital
signatures. The index lookup returns either a
duplicate status, or a unique status. If the status
is unique, the signature is stored in the index.

The archive system executes lookups/inserts
in two distinct ways: real time and batch mode.
Batch mode provides log files with the results of
each lookup/insert request.

The signature index should allow multiple
readers, and a single writer.

Upon system restart, the signature index
needs to recover to a state that is consistent with
the reset of the archive system. The signature
index should be able to be rebuilt quickly and
efficiently.

N

3. EXISTING SOLUTIONS AND THEIR CRITICISM
This chapter will present two solutions which

are currently in use for management of the
storage systems.

The first of the proposed solutions is a log-
structured file system, which is presented at the
Berkeley, University of California by Mendel
Rosenblum and John K. Ousterhout [1]. The
essence of this solution is based on the
assumption that files are cached in main memory
and that increasing of memory size will make a
cache more and more effective. A log structured
file system writes all modifications to disk
sequentially in a log-like structure, thereby
speeding up both file writing and crash recovery.
The log is the only structure on disk; it contains
indexing information so that files can be read
back from the log efficiently. In order to maintain
large free areas on disk for fast writing, the log is
divided into segments and uses a segment
cleaner to compress the live information from
heavily fragmented segments.

Another solution of the storage management is
based on the use of specialized storage devices
known as “Appliances.” This solution is
developed at the University of Wisconsin-
Madison by John Bent and his associates [2].
The appliances are designed solely to serve files
to clients. These devices usually have the ability
to adapt to the characteristics of the underlying
hardware and operating system. The appliance
developed by this team is called NeST, the open-
source, user-level, software-only storage
appliance.

4. PROPOSED SOLUTION
Our proposed solution has several versions; all

of them are developed in order to improve all of
requests and drawbacks of other solutions. The
main advantage of our model is its simplicity. It
does not require additional memory and
hardware.

4.1 Linear Area of Region to Bit Mapping
This represents a simple, but powerful solution

for our problem. It is presented by a simple bit
array structure. For each equivalent width region
from the whole digital-signature-value domain
there is one corresponding bit. In this way, we
have some kind of or-hash function inside the
specified regions. Figure 1 specifies the concept.

Figure 1: Bit Array Structure

4.1.1 Client-System Communication Protocol
Client-System communication is quiet simple.

Client sends the request about specific digital
signatures. Our system component checks in
local structures and responds with an appropriate
answer. Answer is one of the following:

NO – stands for absolutely no existence of the
specified Digital Signature (DS) in the whole
system.

YES – stands for an absolutely positive
statement that the specified DS exists
somewhere in the system.

Also in the subcomponents of the system (i.e.,
volatile storage memory subcomponent) we can
get the following answers:

POSSIBLE_NO – This means that system
subcomponents “believes” that DS does not exist
in the system.

POSSIBLE_YES – This means that system
subcomponents “believes” that DS exists in the
system.

Now we can explain more precisely the client-
system communication. When our DSM (DS
Management) system component receives
request from the client, it proceeds DS to the
“volatile” system subcomponent which retrieves
answer (NO or POSSIBLE_YES) from “region to
bit” array. If the answer is NO, it can be sent back
to client. If the answer is POSSIBLE_YES, we
have to find absolute answers. Therefore, we
access to the Disk Regions structure which
resides on disk and is explained later in this
chapter. There will be only one disk access since
DSs are arranged on appropriate way.
4.1.2 Required Disk Organization

Our proposal is to use a dedicated hard disk
which will only serve for managing digital
signatures. This will result in Disk Regions
structure that holds digital signatures organized
by regions in which they falls. The main idea is to
organize storing of DSs to provide direct access
to disk sector that contains requested DS. It has
to involve gaps that can be populated in later
system growth. Since each region is covered with
0.125 digital signatures it is quite reasonable
(because of uniform division) to allocate 0.25
DSs per region. We have control over the hard
disk so we can choose that each sector (common
size of 512 bytes per sector is assumed in this
calculation) holds RegionsPerSector = 512 / 20 /
0.25 = 102 regions that are “mixed” inside the
sector but ordered between sectors.

This organization also gives us space of 12
bytes for (global) specific fields and for a pointer
(for the case of overloading). This will results in
about 40 GB of disk consumption.
4.1.3 Process of Structure Creation
Initial structure creation is quite simple. We have
to go through each digital signature stored in our
system and to determine to which region it
belongs to.

This determining process could be done easily
if each region is mapped into a specific bit of
digital signatures. In that case we just have to
use these bits to access the appropriate bit in the

 18

Bit Area Structure. When we find a specific bit we
just set its content to 1.
4.1.4 Process of Adding Signatures

Adding of new digital signature to system is
just iteration in the process of creation of the
array structure. It implies modification (setting to
1) of a single bit, responsible for the region in
which value of digital signature falls.

As one can see, this is not a time consuming
process. However, we have to store this change
to non-volatile memory before system is powered
off. This storing can be done in the process of
shutting down the system. Nevertheless, we
have to be prepared for the system failures, also.
To create a failure-resistant system, we have to
store all the changes of our structure to the non-
volatile memory (i.e., hard disk) before giving
announcement to client about completion of
storing operation. This would unconditionally
imply at least one access to the hard disk and
this is not allowed in our system (this
presumption is one of the most important
requirements in the software). All what we can do
is to allocate a small amount of memory
NewlyAddedDS for storing newly added digital
signatures (Figure 2):

Sporadically, we withdraw collected digital
signatures to disk. With this action we enter to
the new consistent state.

Figure 2: Storing of New Added Digital Signature

4.1.5 Process of Removing Signatures

Process of removing Digital Signatures is a bit
tricky. The main problem lies in the nature of
hash function; it is not a one-to-one function. It
means that we can not decide whether we have
to reset the state of bit that presents region to
which the specified digital signature belongs, or
we should leave it on 1 (meaning that the
removed digital signature is not the only one that
exists in the specified region). However, process
of removing digital signatures is a rear process in
archiving large systems, which is the case in our
problem.

The simplest way of handling the removal of
digital signatures would be ignoring this activity.
What we would lose with this solution will be the
possibility of one region that “arrogantly”
announces Hits.

Another solution is to allocate another small
amount of memory RemovedDS for storing digital
signatures removed from the system.
Sporadically, we remove collected digital
signatures from disk. With this action we enter to
the new consistent state. Also we have to
recalculate values of conditioned bits in the array

structure. This is not an exhaustive process since
we have all digital signatures organized by
regions, which they belong.

Figure 3: Removing of Digital Signature

 4.1.6 Process of Recovering Structure

Recovering of the bit array structure is not an
extensive process, since the bit array structure is
a secondary data structure and it can be easily
recovered from the primary data structure; in this
case from DiskRegions structure (disk sectors
that hold digital signatures from specific regions).

4.2 Client-System Communication Protocol
This solution covers another part of our

problem; case for YES answers. It is presented
with an array structure for each part of the digital
signature. Figure 4 specifies this concept:

Figure 4: Case for YES Answers

4.2.1 Required Disk Organization

Required disk usage is N times larger than in
the previous algorithm. Our decision is not to use
additional disk structures which are specific for
this model.
4.2.2 Process of Structure Creation

Initial structure creation is quite simple. We
have to go through each digital signature stored
in our system and to determine the value of each
digital signature partition. Each value is used as
entry point to an adequate Partial Array. Each
entry is a bit that should be set. This determining
process requires simple shifting, concatenating,
and masking operations.
4.2.3 Process of Adding Signatures

Adding of new digital signature to system is
just iteration in the process of creation of array
structure. It implies modification (setting to 1) of N
bits responsible for value of each digital signature
partition. As one can see, it is not time
consuming process. However, we have to store
this change to non-volatile memory before
system is powered off. This storing can be done
in the process of shutting down system.
Nevertheless, we have also to be prepared for
system failures. As in the previous algorithm we

 19

 20

have no possibility for creation of a failure-
resistant system. All what we can do is to allocate
small amount of memory NewlyAddedDS for
storing newly added digital signatures.
Sporadically, we withdraw collected digital
signatures to disk. With this action we enter to
the new consistent state.
4.2.4 Process of Removing Signatures

Removing Digital Signatures is a bit tricky. The
main problem lies in the nature of hash function;
it is not a one-to-one function. It means that we
can not decide whether we have to reset the
state of bit that presents the region to which the
specified digital signature belongs, or we should
leave it on 1 (meaning that removed digital
signature is not the only one that exists in the
specified region). However, process of removing
digital signatures is a rear process.

The simplest way of handling the removing of
digital signatures would be ignoring this activity.
What we would lose with this solution will be the
possibility of one region that “arrogantly”
announces Hits. Another solution is to allocate
another small amount of memory RemovedDS
for storing digital signatures removed from the
system. This is a pretty exhaustive process since
we can not arrange digital signatures by
partitions in which they belongs (we will need N
times more disk space than for the previous
algorithm). Sporadically, we remove collected
digital signatures from disk. With this action we
enter to the new consistent state.
4.2.5 Process of Recovering Structure

Recovering of the bit array structure is
extensive process, since the bit array structure is
a primary data structure and it can be recovered
only sequentially from the whole collection of
digital signatures.

5. CONDITIONS AND ASSUMPTIONS OF THE
RESEARCH

The archive system can handle several
streams of data simultaneously. The number of
streams, speed of the streams and size of the
files will determine the average number of
lookup/inserts per second. Formula for the
number of lookup/inserts per second is:

(AvgSize / Throughput per second)*NumStreams
= Ops per Second

Assumptions:

• Average File Size = 10 MB,
• Throughput = 300 MB/sec,
• Number of Streams = 8,
• Operations per second (for entire

system) = 2400,
• For a fully configured system, there are 8

computing nodes,
• Each node handles 300 lookups/inserts

per second.

The goal of 300 lookups/inserts per second per
node has been set.

6. ANALYTICAL ANALYSIS
Lets have a digital signature DS1 that falls in a

region R1. Additionally, let’s assume that request
for digital signature DS2 arises, and DS2 also
falls in the region R1. In this case we will respond
to the client with POSSIBLE_YES answer.
However, adequate answer should be NO. This
phenomenon is called groundless Hit.

Main advance of Linear Area of Region to Bit
Mapping concept is in its simplicity. Also it gives
100% precisely answers on each request that
SHOULD result in NO. On the other hand, this
model suffers from groundless Hits.
Digital Signatures Partially Caching concept still
suffers from groundless Hits, but in less measure
than Linear Area of Region to Bit Mapping;
however, the amount of disk utilities is N times
larger then in the first algorithm. It could be
improved to almost completely avoid groundless
Hits, but, as one can see, there is no algorithm
and data organization that will give just valid Hits
answers. The reason is that the amount of RAM
storage needed for storing whole data (20 * 1
Billion = 20 Billion = 20 GB) and because of
uniform division of digital signature values.

In the case of uniform division impact, our
software allows maximum each third check that
results in disk access. If we include human and
real-system-utilization impact we will get slightly
different results. For example: a user “A” is
storing collection of Mozart’s compositions that
user “B” have just stored on the system. In this
specific case, request for each document’s digital
signature will result in justified Hit. The result will
be 100% disk access!

7. PERFORMANCE ANALYSIS
In our specific case we have:

DS_COUNT - a 1 billion of digital signatures,
MEM_SIZE - a 1 GB of volatile memory (RAM),
DISK_SIZE - almost unlimited disk space (we will
limit it to 256 GB).

Let us first consider Linear Area of Region to
Bit Mapping concept. With 1 GB RAM we can
create 8Gb large Bit Array Structure (BAS).
Thereby, we can divide DS value domain on 8G
regions and finally we can calculate
BAScoverage, the percent of coverage (coverage
with existing digital signatures) for each region:

BAScoverage = DS_COUNT / BAS_SIZE=
DS_COUNT /8*MEM_SIZE = 1/8 ˜ 12.5%

This result is telling us that in case of the first
model, each eight check (client request to our
system component) will result in groundless Hits
(and need for disk access).

In the case of Digital Signatures Partially
Caching concept we have to find on how many
parts (N) digital signatures should be split to fit

 21

into the specified amount of RAM memory (1
GB). We can find N from the following equitation:

MEM_SIZE=MEM_USAGE=N*2(20*8/N)/8

At first we have to see if it is satisfied with N=1.
In this case we have MEM_SIZE = 5KB =>
equitation is satisfied. This equitation is a
transcendental equitation and it can only be
calculated by probing (we have to found the
smallest N that satisfies the equitation). One can
see that N = 6. Since 20*8/6 is not an integral
number, we will get the following partitions:

26 + 26 + 26 + 26 + 28 + 28 = 160b

In this case:
P1 PN
MEM_USAGE = (4*2(26) 2*2(28))/8 B = 96 MB

8. CONCLUSION
In conclusion, the proposed approach proves

to more efficient compared the existing solutions,
in conditions of interest for this research. The
proposed solution is of interest to those who a
faced with the management of extremely large
volumes of files.

REFERENCES
[1] Rosenblum, M., Ousterhout, J., “The Design and

Implementation of a Log-Structured File System,” ACM
Transactions on Computer Systems, 1992.

[2] Bent, J., Venkataramani, V., LeRoy, N., Roy, A., Stanley,
J., Arpaci-Dusseau, A., Arpaci-Dusseau, R., Livny, M.,
“Flexibility, Manageability, and Performance in a Grid
Storage Appliance,” Proceedings of the 11th IEEE
Symposium on High Performance Distributed Computing
(HPDC-11), July 24-26, 2002.

